PACCMOTPEHO

на заседании кафедры естественно-математических наук Протокол № 5 от 31,05,021г.

Руководитель Т.В. Шерстобитова

Муниципальное бюджетное общеобразовательное учреждение «Средняя школа № 1 с углубленным изучением отдельных предметов г. Котово» Котовского муниципального района Волгоградской области

РАБОЧАЯ ПРОГРАММА

элективного курса по биологии для 9 класса, реализуемого на базе центра образования естественно-научной и технологической направленностей «Точка роста»

> СОСТАВИТЕЛЬ: учитель МБОУ СШ №1 г. Котово Голосова Е. А.

Пояснительная записка

Предлагаемый элективный курс предназначен для обучающихся 9 класса. Программа курса рассчитана на 34 часа. Элективный курс по биологии «Решение задач по генетике» составлен на основе Программ элективных курсов «Биология. 9 класс. Профильное обучение», сборник 4, Сивоглазов В.И., Пасечник В.В., Москва, «Дрофа», 2006 г.

Результаты освоения курса.

Знаты

- общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков; специфические термины и символику, используемые при решении генетических задач
 - законы Менделя и их цитологические основы
- виды взаимодействия аллельных и неаллельных генов, их характеристику; виды скрещивания
 - сцепленное наследование признаков, кроссинговер
 - наследование признаков, сцепленных с полом
- генеалогический метод, или метод анализа родословных, как фундаментальный и универсальный метод изучения наследственности и изменчивости человека
- популяционно-статистический метод основу популяционной генетики (в медицине применяется при изучении наследственных болезней)

Уметь:

- объяснять роль генетики в формировании научного мировоззрения; содержание генетической задачи;
- применять термины по генетике, символику при решении генетических задач;
 - решать генетические задачи; составлять схемы скрещивания;
- анализировать и прогнозировать распространенность наследственных заболеваний в последующих поколениях
- описывать виды скрещивания, виды взаимодействия аллельных и неаллельных генов;
- находить информацию о методах анализа родословных в медицинских целях в различных источниках (учебных текстах, справочниках, научно-популярных изданиях, компьютерных базах данных, ресурсах Интернет) и критически ее оценивать;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- профилактики наследственных заболеваний;
- оценки опасного воздействия на организм человека различных загрязнений среды как одного из мутагенных факторов;
- оценки этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение).

Содержание курса.

Введение (1 ч). Цели и задачи курса. Актуализация ранее полученных знаний по разделу биологии «Основы генетики».

Тема 1. Общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков (2 ч).

Генетика – наука о закономерностях наследственности и изменчивости. Наследственность и изменчивость – свойства организмов. Генетическая

терминология и символика. Самовоспроизведение — всеобщее свойство живого. Половое размножение. Мейоз, его биологическое значение. Строение и функции хромосом. ДНК — носитель наследственной информации. Значение постоянства числа и формы хромосом в клетках. Ген. Генетический код.

Демонстрации: модель ДНК и РНК, таблицы «Генетический код», «Мейоз», модели-аппликации, иллюстрирующие законы наследственности, перекрест хромосом; хромосомные аномалии человека и их фенотипические проявления.

Тема 2. Законы Менделя и их цитологические основы (8 ч).

История развития генетики. Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное скрещивание. Закон доминирования. Закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание. Закон независимого комбинирования. Фенотип и генотип. Цитологические основы генетических законов наследования.

Практическая работа № 1 «Решение генетических задач на моногибридное скрещивание».

Практическая работа № 2 «Решение генетических задач на дигибридное скрещивание».

Демонстрации: решетка Пеннета, биологический материал, с которым работал Г.Менлель.

Тема 3. Взаимодействие аллельных и неаллельных генов. Множественный аллелизм. Плейотропия (6 ч).

Генотип как целостная система. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование) и неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия. Условия, влияющие на результат взаимодействия между генами.

Практическая работа № 3 «Решение генетических задач на взаимодействие аллельных и неаллельных генов».

Практическая работа № 4 «Определение групп крови человека — пример кодоминирования аллельных генов».

Демонстрации: рисунки, иллюстрирующие взаимодействие аллельных и неаллельных генов

- окраска ягод земляники при неполном доминировании;
- окраска меха у норок при плейотропном действии гена;
- окраска венчика у льна пример комплементарности
- окраска плода у тыквы при эпистатическом взаимодействии двух генов
- окраска колосковой чешуи у овса пример полимерии

Тема 4. Сцепленное наследование признаков и кроссинговер (4 ч).

Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов. Генетические карты хромосом. Цитологические основы сцепленного наследования генов, кроссинговера.

Практическая работа № 5 «Решение генетических задач на сцепленное наследование признаков».

Демонстрации: модели-аппликации, иллюстрирующие законы наследственности, перекрест хромосом; генетические карты хромосом.

Тема 5. Наследование признаков, сцепленных с полом. Пенетрантность (4 ч).

Генетическое определение пола. Генетическая структура половых хромосом. Гомогаметный и гетерогаметный пол. Наследование признаков, сцепленных с полом. Пенетрантность – способность гена проявляться в фенотипе.

Практическая работа № 6 «Решение генетических задач на сцепленное с полом наследование, на применение понятия - пенетрантность».

Демонстрации: схемы скрещивания на примере классической гемофилии и дальтонизма человека

Тема 6. Генеалогический метод (4 ч).

Генеалогический метод — фундаментальный и универсальный метод изучения наследственности и изменчивости человека. Установление генетических закономерностей у человека. Пробанд. Символы родословной.

Практическая работа № 7 «Составление родословной».

Демонстрации: таблица «Символы родословной», рисунки, иллюстрирующие хромосомные аномалии человека и их фенотипические проявления.

Тема 7. Популяционная генетика. Закон Харди-Вейнберга (4 ч).

Популяционно-статистический метод — основа изучения наследственных болезней в медицинской генетике. Закон Харди-Вейнберга, используемый для анализа генетической структуры популяций.

Практическая работа № 8 «Анализ генетической структуры популяции на основе закона Харди-Вейнберга»

Итоговое занятие (1 ч). Подведение итогов.

Тематическое планирование

№ занятия	Тема занятия	Элементы содержания	Дата по плану	Дата по факту
1.	Введение.	Цели и задачи курса. Актуализация ранее полученных знаний по разделу биологии «Основы генетики».		
2.	Общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков.	Генетика — наука о закономерностях наследственности и изменчивости. Наследственность и изменчивость — свойства организмов. Генетическая терминология и символика. Самовоспроизведение — всеобщее свойство живого. Половое размножение. Мейоз, его биологическое значение. Строение и функции хромосом.		
3.	ДНК – носитель наследственной информации.	ДНК – носитель наследственной информации. Значение постоянства числа и формы хромосом в клетках. Ген. Генетический код.		
4.	Законы Менделя и их цитологические основы	Закон доминирования. Закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Закон независимого комбинирования. Фенотип и		

		генотип.	
5.	Полное и неполное доминирование. Закон чистоты гамет.		
6.	Закон независимого комбинирования.	Закон независимого комбинирования. Фенотип и генотип.	
7,8	Практическое занятие №1 «Решение генетических задач на моногибридное скрещивание».	Моногибридное скрещивание. Анализирующее скрещивание.	
9,10	Практическое занятие №2 «Решение генетических задач на дигибридное скрещивание».	Дигибридное скрещивание.	
11.	Решение задач на полигибридное скрещивание.	Полигибридное скрещивание.	
12.	Взаимодействие аллельных и неаллельных генов.	Взаимодействие аллельных и неаллельных генов в определении признаков.	
13.	Множественный аллелизм. Плейотропия.	Генотип как целостная система.	
14,15	Практическое занятие №3 «Решение генетических задач на взаимодействие аллельных и неаллельных генов».	Доминирование, неполное доминирование; комплементарность, эпистаз и полимерия.	
16,17	Практическое занятие №4 «Определение групп крови человека — пример кодоминирования аллельных генов».	Плейотропия. Условия, влияющие на результат взаимодействия между генами.	
18.	Сцепленное	Хромосомная теория	

	наследование признаков и кроссинговер	наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов.	
19.	Генетические карты хромосом.	Генетические карты хромосом.	
20,21	Практическое занятие №5 «Решение генетических задач на сцепленное наследование признаков».	Цитологические основы сцепленного наследования генов, кроссинговера.	
22.	Наследование признаков, сцепленных с полом.	Генетическое определение пола. Генетическая структура половых хромосом. Гомогаметный и гетерогаметный пол. Наследование признаков, сцепленных с полом.	
23.	Пенетрантность.	Пенетрантность – способность гена проявляться в фенотипе.	
24.	Практическое занятие №6 «Решение генетических задач на сцепленное с полом наследование».	Наследование признаков, сцепленных с полом.	
25.	Решение задач на применение пенетрантности.		
26.	Генеалогический метод — фундаментальный и универсальный метод изучения наследственности и изменчивости человека.	Генеалогический метод — фундаментальный и универсальный метод изучения наследственности и изменчивости человека.	
27.	Родословная человека.	Установление генетических закономерностей у человека.	
28,29.	Практическое занятие №7 «Составление родословной».	Пробанд. Символы родословной.	

30.	Популяционная генетика.	Популяционно-статистический метод — основа изучения наследственных болезней в медицинской генетике. Закон Харди-Вейнберга, используемый для анализа генетической структуры популяций.	
31.	Закон Харди- Вейнберга.	Закон Харди-Вейнберга, используемый для анализа генетической структуры популяций.	
32,33	Практическое занятие №8 «Анализ генетической структуры популяции на основе закона Харди-Вейнберга».	генетической структуры популяций.	
34.	Итоговое занятие.		